Belief Interval of Dempster-Shafer Theory for Line-of-Sight Identification in Indoor Positioning Applications
نویسندگان
چکیده
Location data are among the most widely used contextual data in context-aware and ubiquitous computing applications. Numerous systems with distinct deployment costs and levels of positioning accuracy have been developed over the past decade for indoor positioning purposes. The most useful method focuses on the received signal strength (RSS) and provides a set of signal transmission access points. Furthermore, most positioning systems are based on non-line-of-sight (NLOS) rather than line-of-sight (LOS) conditions, and this cause ranging errors for location predictions. Hence, manually compiling a fingerprint database measuring RSS involves high costs and is thus impractical in online prediction environments. In our proposed method, a comparison method is derived on the basis of belief intervals, as proposed in Dempster-Shafer theory, and the signal features are characterized on the LOS and NLOS conditions for different field experiments. The system performance levels were examined with different features and under different environments through robust testing and by using several widely used machine learning methods. The results showed that the proposed method can not only retain positioning accuracy but also save computation time in location predictions.
منابع مشابه
A Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence
This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically ...
متن کاملA Study on Properties of Dempster-Shafer Theory to Probability Theory transformations
In this paper, five conditions that have been proposed by Cobb and Shenoy are studied for nine different mappings from the Dempster-Shafer theory to the probability theory. After comparing these mappings, one of the considerable results indicates that none of the mappings satisfies the condition of invariance with respect to the marginalization process. In more details, the main reason for this...
متن کاملA NEW FUZZY MORPHOLOGY APPROACH BASED ON THE FUZZY-VALUED GENERALIZED DEMPSTER-SHAFER THEORY
In this paper, a new Fuzzy Morphology (FM) based on the GeneralizedDempster-Shafer Theory (GDST) is proposed. At first, in order to clarify the similarity ofdefinitions between Mathematical Morphology (MM) and Dempster-Shafer Theory (DST),dilation and erosion morphological operations are studied from a different viewpoint. Then,based on this similarity, a FM based on the GDST is proposed. Unlik...
متن کاملمحاسبه فاصله عدم قطعیت بر پایه آنتروپی شانون و تئوری دمپستر-شافر از شواهد
Abstract Dempster Shafer theory is the most important method of reviewing uncertainty for information system. This theory as introduced by Dempster using the concept of upper and lower probabilities extended later by Shafer. Another important application of entropy as a basic concept in the information theory can be used as a uncertainty measurement of the system in specific situation In th...
متن کاملREGION MERGING STRATEGY FOR BRAIN MRI SEGMENTATION USING DEMPSTER-SHAFER THEORY
Detection of brain tissues using magnetic resonance imaging (MRI) is an active and challenging research area in computational neuroscience. Brain MRI artifacts lead to an uncertainty in pixel values. Therefore, brain MRI segmentation is a complicated concern which is tackled by a novel data fusion approach. The proposed algorithm has two main steps. In the first step the brain MRI is divided to...
متن کامل